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In this paper a two-dimensional free boundary arising from the steady thermo- 
capillary flow in a viscous incompressible fluid is studied numerically. The problem 
is considered in the context of the open-boat. crystal-growth technique. The motion 
of the fluid is governed by the Navier-Stokes equqtions coupled with the heat 
equation. The problem is solved numerically by a finite-element-method discretiza- 
tion. Three iterative methods are introduced for the computation of the free 
boundary. The non-dimensional form of the problem gives rise to the following 
characteristic parameters : Reynolds, Grashof, Prandtl, Marangoni, Bond, Ohnesorge, 
Biot numbers. The influence of these parkmeters on the flow field, the temperature 
distribution and the shape of the free boundary is studied. 

1. Introduction 
Many problems in physics and mechanics can be described by partial differential 

equations for the unknown functions. hen ihere are additional geometrical 
unknowns they are known as free-boun 2T ry p'roblems. In general, one defines a 
free-boundary problem as a boundary-value prdblem involving (partial) differential 
equations on domains, parts of whose boundaries, thefree boundaries, are unknown 
and must be determined as part of the solution. 

In  hydrodynamics classical unknowns are, for instance, the velocity vector and the 
pressure distribution in the fluid. Free b o 4 r i e s  can be present as a liquid-gas 
interface or the interface of two immiscible lihuids. Capillary free boundaries are 
defined as free boundaries on which one must take into account capillary forces, i.e. 
forces due to intermolecular attractions having a non-vanishing resultant at the 
boundary of the liquid. 

There are many important technological and engineering-science applications in 
which capillary free boundaries play a dominant part, for example in lubrication, 
electrochemical plating, corrosion, coating, polymer technology, separation processes, 
metal and glass forming processes, crystal gro*th and aerospace technology, there 
are abundant technologically important fluid flows with capillary free boundaries. 

A situation of special interest, both from the technological and the purely 
mathematical point of view, is the study of the behaviour of liquids in an open 
container in a low-g environment, where capillary free boundaries must be taken into 
account. These problems have been studied in Greenspan (1968), Guibert, Huynh & 
Marce (1976) and Moiseev & Rumyantsev (1968) for inviscid fluids in relation to 
aerospace technology (attitude control of spacecraft and satellites). For a study of 
viscous capillary stationary free boundaries, we refer to Cuvelier (1982, 1985a), 
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FIGURE 1. The Bridgman technique. The crucible is moved down a temperature gradient 
T+ > T, > T- with T, the solidification temperature. 
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Pukhnachev (1974) and Solonnikov (1979). Non-stationary capillary free boundaries 
have been investigated in Allain (1984) and Beale (1984) and from a numerical point 
of view in Cuvelier (1 985 b) . 

In  this paper we shall focus our attention on the (finite-element) analysis of 
thermocapillary free boundaries in crystal-growth processes. Crystal growth, by 
definition, is concerned with the formation of a single crystal, by which we mean a 
solid in the most uniform structure that can be attained. This uniform structure of 
crystals, which can be modified by the controlled addition of impurities, allows, for 
instance, the transmission without scattering of electromagnetic waves and charged 
particles and forms the basis of the electronic-industrial fabrication of devices like 
chips, transistors, semi-conductors, etc. When we survey the crystal-growth methods, 
we see that the technique where crystals grow from a melt is the most widely used 
one for the preparation of large single crystals. For a review of this type of method 
we refer to Brice (1965), Hartman (1973), Hurle & Jakeman (1981) and Pimputkar 
& Ostrach (1981). All growth-from-the-melt or solidification methods have in common 
that the melt is cooled below its freezing point, the melt solidifies and the solid 
(crystal)-melt interface is advancing into the melt region. 

Melt growth techniques can be subdivided into three groups : 
(i) Those of Bridgman, Stober and Kapitza, where the melt is contained in a 

crucible and is progressively solidified from one end by moving the crucible relative 
to a temperature gradient (see figure 1). One disadvantage of such techniques is that 
a part of the liquid (melt)-solid (crystal) interface is in contact with the crucible. 

(ii) Those of Czochralski and Kyropoulos, and also variants of these (like for 
instance the Pedestal technique), are widely used. The melt is contained in a crucible 
and the crystal grows at the free melt surface in such a way that there is no contact 
between the crucible and the crystal. In the Czochralski process (see figure 2 )  the 
crystal is pulled slowly out of the melt. In the Kyropoulos variant the temperature 
of the melt is lowered, so that the crystal grows into the melt. The advantage of this 
group of techniques is that the liquid-solid interface is not in contact with the 
crucible. 

(iii) In  the third group the melt is supported by its own solid and crucibles are 
eliminated. A molten zone is maintained by surface tension in the rod of solid and 
is moved slowly with respect to furnace coils. Particular examples of these techniques 
are the floating-zone technique (see figure 3), where the rod is in the direction of 
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FIQURE 2. The Czochralski technique. The crystal is pulled out of the melt. T+ > T, > T-, 
T, is the solidification temperature. 

Solid 

T- 
FIGURE 3. The floating-zone technique. The furnace coils are slowly moved upward. 

T+ > T, > T-, T, solidification/melting temperature. 

gravity, and the open-boat-zone technique, where the rod is directed perpendicular 
to gravity. A disadvantage of this technique is that a high surface tension is required. 
On the other hand it can be repeated many times, which can be an important feature 
when the crystal must be doped with impurities. Moreover, only a part of the charge 
is molten at any time. 

As we can see from these three growth techniques, there are, in general, two types 
of free boundaries. The first is the crystal-melt interface. The determination of this 
interface is reminiscent of the so-called Stefan problem, because heat transfer in the 
crystal and in the melt is coupled by requirements of temperature continuity and 
energy conservation. In the heat-flux balance on this interface, the latent heat must 
be taken into account since it determines the growth rate of the crystal into the melt. 

The second kind of free boundary is the liquid-air interface. According to the basic 
principles of hydrodynamics the condition of a balance of forces must be fulfilled on 
this free boundary. Surface tension and the temperature dependence of the surface- 
tension coefficient must be taken into account, since they influence the flow pattern 
of the melt and consequently the temperature distribution near the crystal. This 
temperature distribution near the crystal in turn affects the crystal morphology and 
growth rate. 
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The possibility nowadays of using the space shuttles to carry a manned space 
laboratory has intensified interest in the concept of crystal manufacturing in space. 
Prolonged periods in a microgravity environment of about g-1OP6 g can be 
achieved in a near-Earth orbit, where g denotes the terrestrial gravity. The 
importance of a low-g environment for crystal growth is that natural convection (i.e. 
convection due to density variations in the melt) can be reduced considerably. 
Moreover, it  was found that in a low-g situation more homogeneous and less striated 
crystals can be produced. Although it is not certain whether there are crystals for 
use in commercial electronic devices which can only be manufactured in space and 
whose quality is unattainable on Earth, crystal-growth experiments or, in general, 
the behaviour of liquids in space can help us to understand fundamental physical 
processes, in particular when these experiments are complemented by terrestrial 
experiments, mathematical modelling and numerical analysis (for reviews see 
Curruthers 1977; Cuvelier 1982; Haynes 1979; Ostrach 1976,1982; and Pimputkar & 
Ostrach 1981). Although, as mentioned above, a low-g environment can reduce 
substantially the phenomenon of natural convection due to density variation in the 
melt, other types of convection processes become important. The presence of a free 
melt-gas interface can influence the motion of the melt when the coefficient of surface 
tension varies from point to point. In a non-isothermal melt there will be a 
surface-tension gradient on the melt-gas interface because of the temperature 
dependence of the surface-tension coefficient. This surface-tension gradient acts like 
a shear stress on the melt-gas interface and thereby generates a surface flow from 
the region of low surface tension to that of high surface tension, which usually means 
from hot to cold. Owing to the viscosity of the melt this surface motion penetrates 
into the melt and induces a bulk flow. This type of convection is called Marangoni 
or thermocapillary convection. For reviews on surface-tension phenomena we refer 
to Ostrach (1977, 1979, 1982), Schwabe (1981) and Schwabe & Scharmann (1981). 

The aim of this paper is to investigate stationary (melt-gas) free-boundary 
problems in the context of crystal growth from the numerical point of view. As we 
have mentioned above, the crystal growth system is subjected to two types of 
convection. The first is the convection due to gravitational buoyancy forces (which 
we call Grashof convection). The second is induced by a gradient of the surface-tension 
coefficient (called Marangoni convection). 

We shall study the relative influence of these two types of convection on the shape 
of the melt-gas free boundary. The melt-crystal interface shape is not considered in 
this paper and is assumed to be constant. Since one needs to solve the general 
hydrodynamic equations based on the Navier-Stokes equations, it is evident that the 
analytical or numerical study of this type of free-boundary problem is difficult. This 
is why we shall restrict ourselves to a model problem of open-boat type which has 
some relevance from the crystal growth point of view and which is general enough 
to admit a realistic study of free-boundary shapes. Although some limitations exist 
when comparing with real crystal-growth techniques, the open-boat situation to be 
discussed in this paper can serve as a model for various crystal-growth configurations. 

In $2 we formulate the open-boat-model problem and write the (partial differential) 
equations governing the melt flow field. The equations are written in dimensionless 
form and characteristic numbers (Reynolds, Grashof, Prandtl, Marangoni, Biot, Bond, 
Ohnesorge) are introduced. In $3 we treat some iterative methods for the computation 
of the free-boundary shape and make some remarks concerning the finite-element 
discretization of the system. Finally, in $4 we present and discuss the results of 
numerical experiments. 
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FIGURE 4. Liquid contained in a vessel ^Y 

2. The mathematical model 

vessel Y placed in the field of gravity (:d. We suppose that Y is given by 

The problem we shall consider is the stationary motion of a liquid in an open 

r = {x = {xl, 2 , } E R 2 (  2, > $Ax1), 0 < x1 c L}, (2.1) 

where $r: z1 + is such that the container wall av is sufficiently smooth (see 
figure 4 ) .  

When the fluid is in stationary motion the position of the fluid surface S, which 
is represented by a function $ : x1 E (0, L) -+$(xl) (see figure 4) is not known a priori 
and is called a free boundary. The object is to find the shape of this free boundary. 
The equations describing the dynamics of the fluid flow can be derived from the basic 
principles of conservation of mass, momentum and energy. 

These basic equations can be simplified by making the following assumptions (cf. 
Batchelor 1967; Landau & Lifchitz 1963). We assume that the Boussinesq approxi- 
mation is valid, which means that variations in the density po are negligible, except 
in the body-force term of the equation of conservation of momentum, where the 

variations induced by temperature gradients give rise to a body force -c), where 

p satisfies the following relation of state : 

P = Po(1  --B(T-To)), (2.2) 

where T denotes the temperature, /3 = - l / p ,  (dp/dT) I T o  is the volume expansion 
coefficient and where the subscript 0 refers to a reference state. We neglect the 
mechanical-energy term in the equation of conservation of energy and we assume that 
the viscosity p, the thermal conductivity k and the specific heat c p  at constant 
pressure are constant. 

With these assumptions the stationary equations of conservation of momentum, 
mass and energy reduce to the well-known Naviel-Stokes equations coupled with the 
heat-conduction equation for the velocity u = {ul, u,}, the pressure p and the 
temperature T 

(2.3) 

v - u  = 0 ,  (2.4) 

(2.5) 

0 
-p  Au +PO(U' V )  24 + VP = Po g ( 1  - B V -  To)) ( - 1 )  9 

- kAT+cppo(u.V)  T = 0,  
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in the region Q, defined by 

(2.6) 
In  the equation we have V the gradient operator and the Laplace operator A. A body 
force per unit mass f or a heat-source density q can be added to the right-hand side 
of (2.3) or (2.5) respectively. The boundary conditions are as follows : on r = a V n aQ, 
we describe Dirichlet boundary conditions for the velocity 
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Q, = {x = {%I, Z,}E"Ir 1x2 < d(q)>. 

- 
u =  h, o n r  (2.7 1 

According to the basic principles of hydrodynamics, the conditions of a balance 
of forces must be fulfilled on the free boundary. These conditions are the so-called 
traction conditions on S for the normal stress a" and the tangential stress a?: 

where 

(2.10) 

andwherev = { v l ,  v2}denotestheunitoutwardnormalonS,~ = { T ~ ,  T ~ }  = {v2, -vl}the 
unit tangent on S, y the surface-tension coefficient and p ,  the outside (atmospheric) 
pressure which we put equal to zero. R denotes the radius of curvature of S, defined 

1 9' (2.11) 

Surface tension is a thermodynamic property depending on temperature. Variations 
in temperature cause shear stress which can influence by an order of magnitude the 
rates of transport of momentum and heat near the free surface. This type of 
phenomenon is called the Marangoni (or thermocapillary ) effect. The surface-tension 
coefficient of a pure liquid in equilibrium with its own vapour or with a gas decreases 
almost linearly with temperature until a critical temperature is approached. For the 
modest velocities and temperature differences that we assume, the surface-tension 
coefficient can be considered as a linear function of temperature : 

Y = Yo(1-@-To)), (2.12) 

where a = - (l/y,,) (dy/dT) I T o  is the temperature coefficient of surface tension and 
where the subscript 0 refers to a reference state. In general, the value of a is positive 
and for many crystals, e.g. Si, NaNO,, A120,, . .. its value is less than 5 x 
Relation (2.12) is known as the Eotvos formula and is applicable for a large number 
of liquids (cf. Barbe 1967; Hardy 1985). 

We now make the following Boussinesq-type approximation with respect to the 
surface tension. We assume that the surface-tension coefficient y equals a constant 
yo independent of temperature, except in the boundary condition (2.9) where y 
depends on temperature according to (2.12). The stress boundary conditions (2.8), 
(2.9) on the free boundary S now take the following form: 

a =-? Y onS, (2.13) 
" R  

aT 
a, = -"yo- on S. a7 (2.14) 
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This approximation is widely applicable and is justified by an order-of-magnitude 
analysis. In practical situations the variation in temperature along the free surface 
never exceeds 100°C, so that the relative change in the normal stress due to 
temperature is less than approximately 5 x x = 0.025. 

For a stationary fluid motion, the free boundary is a streamline which implies the 
following kinematic condition : 

u, = u*v = 0 on S. (2.15) 
Moreover the free boundary must satisfy the condition that the contact angle S 
between S and the container wall (measured within the fluid) is prescribed (see 

(2.16) 
figure 4) : 

Concerning the boundary conditions for the temperature, we assume that the 
temperature is given on the container wall: 

T = A ,  o n f ,  (2.17) 
and that the following radiation condition holds on the free boundary in combination 
with Newton’s law of cooling: 

Q’(0) = - cotan 8, Q’( 1) = cotan 6. 

(2.18) -k- = €a(T4-T~~,)+r(T-Tamb)1.25 on S 

where B is the emissivity, d the Stefan-Boltzmann constant, Ti,, the temperature of 
the bounding gas far from the interface, 7 the heat-transfer coefficient and Tamb the 
ambient gas temperature. 

aT 
av 

Finally we specify the quantity of fluid pc in the vessel Y by 
,- 

J ~~ dx = Vc given. (2.19) 

The relation of this model to real crystal-growth situations is as follows (cf. Schwabe 
& Scharmann 1981). Open-boat zoning is simulated if the boundary r has constant 
temperature T, and when the free boundary S is heated by a furnace coil of 
temperature T+ > T,. The vertical sides of the vessel can then be interpreted as the 
meltrcrystal interface, the bottom of the vessel represents the boat (crucible) and S 
is the melt-gas interface. The Czochralski technique is simulated when the left-hand 
vertical side of Y (the crucible) is at temperature T+ and the right-hand vertical side 
of Y (the crystal) at temperature T, < T+. 

The equations will now be written in dimensionless form. We introduce a 
lengthscale L, a velocity scale U which will be specified later and we obtain the 
following dimensionless quantities : 

where ST = T+ - T, with T+ = max (A,), T, = min (A,). When we take To = i(T++ T,), 
the problem in dimensionless form is formulated as follows (where we have dropped 
the *): 

Find a free boundary Q, a velocity vector u = {ul, uz}, a pressure field p and a 
temperature field T such that 

(2.20) 

in l2, (2.21) 

1 Gr 
- - A ~ + ( U - V ) U + V ~  Re = ? ( T - T ~ ) (  Re 

v-u = 0, 

1 
Re Pr 

-- AT+ (u-V)  T = 0, J (2.22) 
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T =  h,, 

1 
R 

(Oh Re)2a, = --Bo$, 

Ma i3T 
' Re2Pr a? '  g =--- 

(2.23) 

(2.24) 

1 u, = 0, 

1 i3T Bi, Bi --_- -- ( T 4 - T t n f ) + 2  (T-T,,b)1.25, 
Re Pr a v  Re Pr Re Pr 

$ 'P I  = - cotan 6, $'(i) = cotan S, 

dx = V,, 

where 

Re = - Lupo Reynolds number, 
P 

Grashof number, ISgPi L3ST 
P2 

cr= 

Pr = Prandtl number, k 

Oh = Ohnesorge number, 
(Po Yo 0: 

BO = - L2 Bond number, 
Yo 

M a  = c p p O  L6T Marangoni number, 
Pk 

Bi, = euL(ST)S Biot number for radiation, k 

Biot number for cooling, 
V L ( S T ) ' . ~ ~  

k 
Bi, = 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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Concerning the-choice of the characteristic velocity U ,  when i, 0 it is obvious to 
take U = max Ih,I. Wheni, = 0, we can take U = ,u/Lpo which isequivalent to taking 
Re = 1 in the system of equations. 

From the equations it is evident that a necessary condition for a static equilibrium 
(i.e. no fluid motion, u = 0) to exist is that the Marangoni number is equal to zero 
(unless the fluid is isothermal). In the static equilibrium with Ma = Gr = 0, the 
pressure p, and the free boundary $, are completely determined by (2.20), (2.25), 
(2.29), (2.30). One easily verifies that, for V, sufficiently large, $, is determined by 
the following boundary-value problem : 

(2.31) 

$;(O)  = -cotand, $;(1) = cotand, (2.32) 

(2.33) 

The corresponding static pressure p, is given by 

1 - 
p -- (Bo Vc-2 COSS). * - Oh2 

The temperature T, in the static situation is determined by (2.22), (2.24), (2.28) which 
reduce to: 

AT, = 0 in Q,. = {XE Y I x2 < $,(xl)}, (2.34) 
1 

Pr 
_ _  

T, = h, o n r ,  (2.35) 

1 aT, Bi, Bi 
-- (P,-qnf)+d (T,-!4T,,,)1.25 onS. 

Pr av Pr Pr 
(2.36) 

3. Iterative methods; the finite-element method 
In  this section, we discuss two iterative methods to solve the free-boundary 

problem (2.20)-(2.30). The first is based on the following principle. A shape is assigned 
to the free boundary and the flow within that shape is calculated after disregarding 
one of the boundary conditions on the free boundary. Next, a new free-boundary 
shape is computed which satisfies as closely as possible the boundary condition that 
was relaxed. This procedure is repeated until convergence is attained. 

The second method also involves a deforming domain but eliminates the successive 
iteration between the surface position and field variables by introducing, in the 
discrete case, the position of the nodes on the free surface directly as degrees of 
freedom. This is then coupled with a quasi-Newton iterative procedure with 
Broyden’s update, which results in the simultaneous calculation of the position of 
the free surface and the field variables at  the new nodal positions once convergence 
is attained. 

The boundary condition on the free surface that will be relaxed in the first iterative 
method is condition (2.25). Let $ be a fixed function satisfying conditions (2.29), (2.30) 
and belonging to some function space H4 (for a precise definition see Solonnikov 1979). 
Then an auxiliary problem is defined by finding the solution {u, p, T)  of problem 
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(2.20)-(2.24), (2.26)-(2.28). This means that condition (2.25) is relaxed and it is this 
boundary condition that will be used to adjust the function 4. 

It can be proved that for small values of Re, Ma and Gr, V, sufficiently large and 
SE (0, A )  the auxiliary problem has a unique solution {u, p , ,  T )  E H ,  x H p  x HT where 
the pressure p ,  is normalized by 

For precise definitions of H,, H p  and HT we refer to Solonnikov (1979). Using (2.29) 
and (2.30), we deduce from (2.25) that 

(Oh R e ) 2 1 p ( % ) d z l  = 20h2 Re dx,-2 cosS+Bo E, (3.2) 

X = (21, 4( .1)> .  

When (4, u, p ,  T )  denotes the solution of the full system (2.20)-(2.30), the pressure 
p and the pressure p ,  corresponding to the auxiliary problem differ by only a 
constant, which gives, using (3.1) and (3.2), the following expression for p ( X ) :  

with 
2 au 

cry(po, u )  = -p,+----'v. 
Re av 

Substitution of (3.3) into boundary condition (2.25) gives 

1 1 
-- +Bo$ = - ( O h  Re)2 (.;(Po, u ) - J  gv(po, u)  dz,)-2 cosS+Bo 

R(4) 0 

for z1 E (0, I). (3.4) 

The function 4 will now be compared with the free boundary #* of the static problem 
defined by (2.31)-(2.33). Introducing p = $-$*, it can be deduced that satisfies 
the following nonlinear ordinary differential equation with Neumann-type boundary 
conditions : 

' + ~ o p  = G on (0, I), 

$ / ( O )  = y ( 1 )  = 0, 
with G given by 

G = - ( O h  Re)2 (gv(po, u ) - r  a&,, u )  dz,)+--- 1 
1 

0 R ( 4 )  4 4 , )  

(3.5) 

-( "-" ) = G(4,  u, p, ,  T ) .  (3.6) 
(1 + 14;12>i 
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Next, we define an operator F : H+ + H+ by 

1 1  

In other words,$ is the solution of (3.5) where Cis replaced by G(4, u($),  p,($), T($) ) ,  
with 4 = q5* + $ and {u(c),  po($), T(&} the unique solution of the auxiliary problem 
corresponding to 4. Using techniques of Solonnikov (1979) the following result can 
be established: for small values of Re, Ma and Gr, V, sufficiently large and &E (0, A), 
the operator F is a contraction in a neighbourhood of the origin of H6. This proves 
the existence and uniqueness of the solution {#, u, p, T )  of problem (2.20)-(2.30). The 
pressure p is calculated from 

where p ,  is the normalized pressure of the auxiliary problem corresponding to q5. 

iteratively approximated by a sequence $O, $ l ,  . . . , 
The algorithm based on these results is the following: the free boundary $ is 

defined by 

(i) $O = #* static free boundary; 
(ii) assume $ l ,  #2, ..., q5l are known; 
(iii) solve the auxiliary problem with #; the solution is denoted by {ul, p i ,  T1} ;  
(iv) solve problem (3.5) with G1 = G($l, uz, p i ,  T z ) ;  the solution is denoted by @; 
(v) q51+1 = $8 + P. (3.9) 

The main steps in the algorithm are the solution of the auxiliary problem (i.e. the 
NavierStokes equations coupled with the heat equation) and the solution of the 
ordinary differential equation for $. The auxiliary problem, which is nonlinear, must 
be solved iteratively and this can be performed in two different ways. The first, called 
the coupled method, is to define a sequence {u', k ,  p i  k ,  pi k}k-O,  1,  2, .., where ul, k ,  p i  
and Tz* k, k 2 1 ,  are computed simultaneously using the quantities ul* k-l and T1* k-l 

of the previous iteration. When the nonlinear terms are linearized by the Newton- 
Raphson method, we find the following scheme : 

\ {ul*O, p?", T""} = { ~ l - l ,  pk-1, TZ-l}, 

Boundary conditions (2.23), (2.26), (2.27) for ul* k .  (3.10) 

V-ul.k =o, 

Boundary conditions (2.24), (2.28) for T1* k .  I 
An alternative method for solving the auxiliary problem is the following uncoupled 
method which defines a sequence {ul* k ,  p i  k ,  Tz* k}k-O,  1 ,  ,., where u1vk andpi' ,  k 2 1,  
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are computed using ul* k-l and T1g k-l with Newton-Raphson linearization for the 
nonlinear terms and where, next, ul* is used to compute T1* : 

Boundary conditions (2 .23) ,  (2 .26) ,  (2 .27)  for ulvk (3.11) 

V'U1.k = 0, 

Boundary conditions (2 .24) ,  (2.28) for T1vk. I 
For both schemes (3.10) and (3.1 l ) ,  the Newton-Raphson linearization of boundary 
condition (2 .28)  reads 

We define 
{d, p i ,  T1} = lim {ul* k ,  p$ k t  T1* k } .  

Results on the existence and uniqueness of a solution {d, p i ,  T1} of the auxiliary 
problem and the convergence of the iterative methods (3 .10) ,  (3.11) can be found in 
Driessen (1984).  

Once {ul, p i ,  T1} is known, we calculate G ( @ ,  ul, p i ,  T1)  and we solve problem (3 .5)  
which has a unique solution for Bo 2 0. Indeed, (3 .5)  is an elliptic boundary-value 
problem with Neumann boundary conditions, the solution of which must satisfy 

k + m  

Both methods have been discretized using the (triangular) finite-element method in 
combination with a penalty method for the incompressibility constraint. For the 
velocity we have chosen continuous piecewise extended-quadratic basis functions 
based on 7 points (three vertices, three midpoints of edges and the centroid) together 
with piecewise-linear non-continuous basis functions for the pressure (see Crouzeix 
& Raviart 1973). The velocities in the centroid of each triangle have been eliminated 
with the aid of the continuity equation. The temperature is approximated by a full 
quadratic polynomial in each element based on six points (three vertices, three 
mid-points of sides). The function 4 is approximated by a one-dimensional quadratic 
element. For an introduction to  the finite-element method and applications to the 
Navier-Stokes equations we refer to  Cuvelier, Segal & van Steenhoven (1986).  

Numerical experiments will be shown in $ 4 .  We note that the uncoupled method 



Thermocapillary free boundaries in crystal growth 13 

(3.11) requires less memory than the coupled method (3.10) but its convergence rate 
is linear, whereas the coupled method converges quadratically. Nevertheless, the 
convergence of the sequence {#, ul, p i ,  T1} is linear irrespective of which inner- 
iteration, (3.10) or (3.11), is used. 

The following method, which is in some sense related to the coupled method (3.10), 
is based on the simultaneous calculation of the position of the free surface and the 
field variables. The procedure is as follows. Using the finite-element method, a large 
system of (nonlinear) equations is constructed where the field variables (i.e. velocity, 
pressure and temperature) as well as the position of the nodes of the free surface are 
considered as degrees of freedom. This large system will be solved by Newton's 
method or a quasi-Newton method using a Broyden update for the inverse of the 
Jacobian of the system. Let us construct the large system of equations, which are 
in fact the Galerkin finite-element equations. We first write the not yet discretized 
Galerkin equations, which are obtained by multiplying (2.20), (2.21), (2.22) and (2.25) 
by appropriate test functions, taking the integral over the corresponding domain and 
substitution of boundary conditions. 

The momentum equation (2.20) is multiplied by a test (vector-) function v = {vl, v2} 
satisfying v = 0 on r and v, = 0 on S. Integration over Q,, application of Green's 
formula and substitution of the boundary conditions (2.23), (2.26) and (2.27) 
leads to 

where 

(v ,  w), = v'w ds. s, 
The incompressibility constraint (2.21) is multiplied by a test function q, which gives, 
after integration over B,, 

(q, w,, = 0. (3.13) 

The energy equation (2.22) is multiplied by a test function 0 satisfying 0 = 0 on r. 
Integration over Q,, application of Green's formula and substitution of (2.24), (2.28) 
gives 

G(T, 0)+6(u, T ,  O)+(&(P-Ttnf)+& Bi Bi ( T - T a m p 5 ,  0 

with 
1 2  aT 30 

Re Pr i - l  x, ax, 
6(T, 0 )  = - Z r-- dx, 
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Finally we multiply (3 .4) ,  which is equivalent to (2 .25) ,  by a test function x, integrate 
from 0 to 1, apply Green's formula and substitute the boundary conditions (2.29) to 
obtain 

+ (Bo - 2 cos 8)  x dzl + ( ~ ( 0 )  + x( 1 ) )  cos 8. 
(3.15) 

Next, we discretize (3 .12) ,  (3 .13) ,  (3.14),  (3.15) using a (triangular) finite-element 
method. The velocity (i.e. u and u )  is approximated by continuous piecewise extended- 
quadratic polynomials. The pressure (i.e. pa and q )  is approximated by piecewise-linear 
polynomials not necessarily continuous in Q. The temperature (i.e. T and 8 )  is 
approximated by a continuous piecewise-quadratic polynomial. Finally, we approxi- 
mate the free boundary (i.e. q5 and x) by continuous piecewise quadratic one- 
dimensional polynomials. The finite-element approximation of all quantities is 
indicated by an index h. Since the basis functions qh are discontinuous, the discretized 
form of (3.13) is equivalent to 

l e v ' U h  dx = 0, (3.16) 

J e ( z , - a : ) v * u h  d~ = 0, ( x z - a i ) V * u h  d~ = 0, (3.17) 

for each triangle e, where {a;, a;} denotes the centroid of e.  The relations (3.17) are 
used to eliminate the velocity unknowns in the centroid, so that the velocity on each 
triangle e is determined by the values in six points (three vertices and three mid-points 
of edges). Relation (3.16) will be satisfied in the following penalized way. We replace 
(3.16) by 

(3.18) 

for all piecewise constant functions qh. 
This finite-element approximation results in a matrix system of nonlinear algebraic 

equations of the form 

(3.12)h: AUh+B(Uh)Uh+CPOh+DTh = F, (3.19) 

(3.18)h : EMPOh + C T U h  = 0, (3.20) 

(3.14)h: i T h + i ( u h )  T h  = G, (3.21) 

(3.15)h : K#h + Luh + Npoh = H,  (3.22) 

where uh,pOh,  Th and #h are the vector I'epreSentatiOnS Of U h ,  p9, Th and $h 

respectively. Notice also that the matrices A ,  B ,  C ,  D, M, CT, A, B,  K ,  L,  N and 
the vectors I;, G, and H all depend on $h through the integration over Q6 which 
depends on $ h ,  

If the vector poh is eliminated from system (3.19)-(3.22), we obtain the reduced 

s: 

I, 

€@Oh, (&&)a,+ (qh, V'uh),, = 0 ( E  > 0 small parameter) 

G ,  (3.23) '1 
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which we write in abbreviated form as 

S ( w )  w = s(wL w = @h,  Th, #a}. (3.24) 

The Newton-Raphson algorithm for solving this system can be written as: 
(i) let wo be an approximation of the solution w ;  (ii) assume w', w2, ..., w2 

are known; (iii) wZ+l is defined as the solution of the following system of (linear) 
algebraic equations : 

J( 3)  wl+l = J( wl) wl - (S( wl) wz - s( w2)) (3.25) 

where J(w) = a Res (w)/aw,  Res (w) = Sw-s ,  is the Jacobian matrix of (3.24). When 
we write (3.25) explicitly we observe that the partitioned upper-left-hand corner 
matrix, i.e. the system corresponding to a fixed domain, is identical to the discretization 
of (3.10) using the same finite element for U h  and Th and the same penalization for 
the incompressibility constraint. 

The Newton-Raphson method (3.25) requires a t  each iteration step the computa- 
tion, assembly and factorization of the Jacobian matrix. In  order to reduce this cost, 
we use a quasi-Newton method for which only an initial Jacobian is assembled and 
factorized. Next, for each subsequent iteration this matrix is updated in a cost-effective 
way. The algorithm we have used is the quasi-Newton method with Broyden's 
update : 

(i) 

(ii) assemble J(wo);  

(iii) factorize HL1 = J-'(w0); 
(iv) 

let wo be an approximation of w ;  

w1 = Hi1  wo, . . , , w1 = H;Jl w2-l ; 

with 
a - - w 2 - 1  ,p l  = Res(w2)-Res(wZ-') 

(vi) wl+l = H-1 2 w2. 

(3.26) 

Hz = J(wZ) +O(a2)  and the convergence rate approaches a Newton-Raphson one, 
while the cost of one iteration is drastically reduced. For a complete description of 
quasi-Newton's method with Broyden's update the reader is referred to Dennis & 
More (1977). Application of this technique to the case of a fixed domain can be found 
in Engelman, Strang & Bathe (1981) ; for applications to an isothermal free-boundary 
problem we refer to Kistler & Scriven (1984), Ruschak (1980) and Saito & Scriven 
(1981). 

4. Numerical experiments 
In order to determine some of the characteristics of the iterative methods discussed 

in the preceding section, we apply these methods to a model problem of floating-zone 
open-boat type. In particular we compare the convergence behaviour of the three 
methods and study the influence of the characteristic numbers Gr, Pr, Ma, Bo, Oh, 
Bi, and Bi,  on the shape of the free boundary. The computations were performed 
on the Amdahl 470 V/7-B computer at  the Delft University of Technology. The 
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program was constructed with aid of A Finite-Element Package (AFEP) (see Segal 
1979) and FIDAP fluid dynamics analysis package (see Engelman 1984). These 
packages consist of a number of subroutines for solving partial differential equations 
with the finite-element method. 

The model problem is a free-boundary variant of the generally accepted problem 
(see Jones & Thomson 1981) that  is used to compare and to test computer codes for 
the solution of the Boussinesq equations. In normalized quantities "Ir is defined by 

Y = {{xl, X2}ER210 < x1 < 1,  x2 > O }  

and the quantity of fluid (or melt) contained in -Y- is equal to unity. For the velocity 
we assume that the no-slip condition is satisfied on the boundary of the container. 
This implies h, = 0, so that the velocity scale U can be chosen such that Re = 1 .  The 
vertical boundaries of the region at x1 = 0 and x1 = 1 (which can be interpreted as 
the crucible wall and the melt-crystal interface, cf. $2) have normalized temperature 
equal to To ++ and To-+ respectively, while at the horizontal boundary at x2 = 0 the 
temperature is linear: T = To++-xl. For all numerical experiments we fixed the 
contact angle at go", which means that the region occupied by the melt in the static 
situation (i.e. Gr = 0, Ma = 0) isgiven by $2,. = {{q, z2} E R2 10 < xl, < 1 , 0  < x2 < l}  
and 4* = 1. The corresponding temperature for Bi, = 0 and Bi, = 0 satisfies 
T* = To ++ -xl. On the region 0,. we used a regular triangulation which corresponds 
to a space discretization of Axl = Ax2 = 0.05. The number of triangular elements was 
equal to  200, the number of line elements was 10. The numerical experiments are 
performed for the following range of the characteristic numbers : - 2. lo4 < Gr < lo5, 
0.73 < Pr < 219, 0.0 < Ma < 400, 0.0 < Bo < lo3, 5.1OP3 < Oh < 1.0, without radi- 
ation and cooling (Bi, = 0, Bi, = 0). Numerical results for radiation (Bi, = 2 x 
and cooling (Bi, = 0.4) will be shown in figures ll(e-Z). We applied method 1 
(algorithm (3.9), (3.10)), method 2 (algorithm (3.9), (3.11)) and method 3 (algorithm 
(3.26)) to the model problem. The computations are terminated when the difference 
between two successive free boundaries is smaller than The inner-iterations 
(3.10) in method 1 and (3.11) in method 2 are terminated when the difference in 
temperature as well as the difference in velocity of two successive iterations is smaller 
than a tolerance of lop5. This tolerance is kept small in order to control the 
convergence behaviour of the inner-iteration. For practical computations one or two 
inner-iterations are sufficient in many cases. 

I n  our computations we observed the following convergence behaviour. Algorithm 
(3.9) has a linear convergence rate, irrespective of the choice of the inner-iteration 
(3.10) or (3.11). The convergence rate of method 3 is almost quadratic (superlinear). 
The inner-iteration (3.10), which couples the velocity and the temperature for a fixed 
domain, has a quadratic convergence rate. The inner-iteration (3.1 l),  which iterates 
between the velocity and the temperature for a fixed domain, has a quadratic 
convergence rate for low Prandtl numbers, otherwise i t  is a linear process. For all 
the iterative processes it is essential that a first guess is made in the neighbourhood 
of the solution. For moderate values of Cr and Ma the static solution can serve as 
a start for the algorithm. For large values of Gr and M a  a good start is given by the 
solution of a situation for a lower Grashof or Marangoni number. To illustrate these 
convergence properties we give in table 1 the differences of two successive free 
boundaries for the situation with Gr = 600, Pr = 0.73, Ma = 0, Bo = 0, Oh = 0.1. I n  
columns 2-3 and 5-6 the inner-iteration accuracy for method 1 and 2 equals 
in columns 4 and 7 only one inner-iteration is performed for method 1 and 2. 

I n  particular, method 3 needs starting values in the close neighbourhood of the 
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Method 1 Method 2 

Outer Inner 
1 inner- 
iteration Inner- 

1 inner- 
iteration Method 3 

iterations iterations Accuracy accuracy iterations Accuracy accuracy accuracy 

1 = 1  
2 
3 
4 
5 
6 
7 
8 

5 0.12 (0) 

3 0.10 (- 1)  
4 0.23 ( -  1) 

2 0.56 (-2) 
2 0.34 (-2) 
2 0.17 (-2) 
1 0.92 (-3) 
- - 

0.14 (0) 
0.15 ( -  1 )  
0.13 ( -  1)  
0.56 (-2) 
0.33 (-2) 
0.16 (-2) 
0.92 (-3) 
- 

9 0.12 (0) 

7 0.10 ( -  1)  
8 0.23 ( -  1) 

7 0.56 (-2) 
6 0.34 (-2) 
4 0.17 (-2) 
3 0.92 (-3) 
- - 

0.13 (0) 0.14 (0) 
0.12 ( -  1)  0.22 ( -  1 )  
0.13 ( -  1)  0.45 (-2) 
0.54 (-2) 0.24 (-4) 
0.33 (-2) 
0.19 (-2) 
0.12 (-2) 
0.87 (-3) 

TABLE 1.  Outer-iterations, inner-iterations and accuracy maxIq5z-q5*-11 for Qr = 600, Pr = 0.73, 
Mu = 0, Bo = 0, Oh = 0.1, Bi, = 0, Bi, = 0. u(b) means a +  lob. 

Gf 
2.0 
14.0 
2.0 

2.0 
1 200 

2x 104 

106 
14.0 
14.0 

200 

1 200 
1200 

0 
0 
0 
0 
0 
0 
0 
0 
0 

- 200 
-800 
- 1000 
- 1500 
-2x 104 
2x104 

2000 
200 
20 
2x104 

2Ooo 
200 
20 
2x104 

2000 
200 
20 

Pr Ma 
0.73 0 
0.73 0 
0.73 0 
0.73 0 
0.73 0 
0.73 0 
0.73 0 
0.73 0 
21.9 0 
219 0 
0.73 0 
0.73 0 
0.73 0.5 
0.73 2.5 
0.73 50 
0.73 150 
0.73 50 
0.73 400 
0.73 100 
0.73 100 
0.73 100 
0.73 50 
0.73 50 
0.73 50 
0.73 50 
0.73 300 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 
0.73 146 

Bo 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 .o 

lo00 
0 
0 
0 
0 
0 
0 
0 
1 .o 

lo00 
0 
0 
0 
0 
0 

1000 
100 
10 

loo0 
100 
10 

lo00 
100 
10 

1 .o 

1 .o 

1 .o 

Oh Bi, 
1.0 0 
1.0 0 
0.1 0 
0.1 0 
0.01 0 
0.01 0 
0.005 0 
0.005 0 
1.0 0 
1.0 0 
0.1 0 
0.1 0 
1.0 0 
1.0 0 
0.1 0 
0.1 0 
0.01 0 
0.01 0 
0.1 0 
0.1 0 
0.1 0 
0.1 0 
0.1 0 
0.1 0 
0.01 0 
0.01 0 
0.1 0 
0.1 0 
0.1 0 
0.1 0 

Bi, 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.1 2x 10-4 0 
0.1 2x 10-4 0 
0.1 2~ 10-4 o 
0.1 2~ 10-4 o 
0.1 0 0.4 
0.1 0 0.4 
0.1 0 0.4 
0.1 0 0.4 

I4 
0.0125 
0.0785 
0.0125 
5.92 
0.0125 

1.24 

0.0734 
0.0438 
6.10 
6.77 
0.0952 
0.418 
8.85 

9.12 

40.0 

87.2 

19.1 

40.3 
15.0 
15.2 
16.7 
7.76 
4.99 
4.61 
5.43 
34.3 
43.1 
28.4 
21.3 
19.6 
51.1 
27.0 
23.0 
22.2 
50.0 
26.7 
22.6 
22.1 

4(0) 
1.021 
1.204 
1 .Ooo 
1.163 
1 .000 
1.009 
1 ,000 
1.007 
1.221 
1.175 
1.135 
1.001 
0.944 
0.567 
0.942 
0.642 
1 .000 
0.998 
0.849 
0.870 
0.999 
0.919 
0.827 
0.768 
0.998 
0.983 
1.010 
1.012 
0.903 
0.723 
1.014 
1.007 
0.946 
0.830 
1.013 
1.006 
0.939 
0.817 

W )  
0.978 
0.773 
1 .000 
0.816 
1 .Ooo 
0.992 
1 .000 
0.995 
0.752 
0.800 
0.850 
0.999 
1.063 
1.488 
1.077 
1.492 
1.001 
1.003 
1.219 
1.195 
1.002 
1.097 
1.177 
1.229 
1.002 
1.015 
0.973 
0.954 
1.204 
1.414 
0.988 
1.040 
1.159 
1.300 
0.986 
1.039 
1.165 
1.311 

TABLE 2. Data for figures 5-11. 
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FIQURE 5. The influence of the Grashof number on the shape of the free boundary, 
the temperature distribution and the flow field : parameters given in table 2. 

final solution. Moreover method 3 requires more computer storage than method 1, 
which, in turn, requires more memory than method 2.  When all three methods do 
converge, they converge to the same (unique) solution of the free-boundary problem. 

In the figures we show the velocity vectors in the nodal points of the triangulation 
and the isotherms. The velocity vectors are scaled, the maximum velocity 1111 is 
indicated for each figure. The isotherms are given for T = To++ to T = To-+ with 
increments of 0.1. For each figure we also give the values of # ( O )  and #(1) for the 
height of the free boundary at  x1 = 0 and x1 = 1. Data corresponding to figures 5-1 1 
are given in table 2. 

The Grashof number represents the relative importance of the buoyancy forces with 
respect to the viscous forces. The influence of this number on the shape of the free 
boundary, the temperature distribution and the flow field is shown in figure 5(a-h) 
for Pr = 0.73, Ma = 0, Bo = 0 and different values of the Ohnesorge number ranging 
from Oh = 1.0 to 0.005. Since the Grashof number appears on the right-hand side of 
the second component of the Navier-Stokes equations, the corresponding buoyancy 
force acts on the fluid particles in an upward direction near the left-hand vertical 
boundary (i.e. where T = To+?$ and acts downwards near the right-hand vertical 
boundary, where T = q-i. This imbalance of forces induces an overpressure in the 
left upper corner and an underpressure in the right upper corner of the melt region. 
This causes the free boundary to rise near x1 = 0 and to drop near x1 = 1. When we 
choose Gr > 14.0 for Oh = 1 .O or Gr > 1200 for Oh = 0.1 the iterative methods do not 
converge, because the finite-element triangulation becomes too distorted with respect 
to the initial triangulation. For Oh = 0.01 and Or > 2.i04 or Oh = 0.005 and Gr > lo6 
none of the methods 1 ,  2 or 3 converge. In  general, for large values of the Grashof 
number, the convective terms in the Navier-Stokes equations dominate the diffusive 
terms and a finer grid is necessary in order to take into account the velocity boundary 
layer near the vertical walls. From the numerical results the order of magnitude of 
the velocity u and the pressure p can be estimated from IuI - &I, p - 6% for large 
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FIGURE 6. The influence of the Prandtl number on the shape of the free boundary, 
the temperature distribution and the flow field: parameters given in table 2. 

values of Cr, whereas for small Grashof numbers Iu( - Gr, p - 6%. This agrees with 
estimates given in Ostrach (1982). These estimates are practically independent of the 
Ohnesorge number. The rise A$ in the free boundary for Bo = 0 can be obtained from 
(2.25) and the estimate for p :  A$ - &Oh2. The influence of the Prandtl number, 
which gives the ratio of viscous forces to thermal forces, is shown in figures 5(a) ,  
6(a ,  b), where the temperature distribution and flow are depicted for Pr = 0.73,21.9, 
219.0 respectively and Qr = 14.0, Oh = 1.0, Bo = 0, Mu = 0. 

For melts with low Prandtl numbers (such as molten metals), the temperature 
distribution is almost independent of the flow, because heat is mainly transported 
by conduction. For melts with high Prandtl numbers, such as molten oxides, the 
convective heat transfer becomes more significant and the isotherms become more 
distorted than those of pure conduction. This causes a change in the flow field which 
can be seen from a decrease of the magnitude of the velocity vector and a flattening 
of the free surface. Nevertheless, the influence of the Prandtl number on the shape 
of the free boundary is small. When the Rayleigh Number Ru = Qr Pr is large, a 
thermal boundary layer appears along the crystal-melt interfaces. In  this case, the 
fluid becomes isothermal (i.e. T = To), except in the boundary layers. The influence 
of the Bond number, which indicates the importance of gravitation versus capillary 
forces, in a pure Grashof convection problem (i.e. when Mu = 0) can be studied from 
the experiments corresponding to figures 5 ( d ) ,  7 (a, b) .  

These figures give the results for Gr = 1200, Pr = 0.73, Mu = 0, Oh = 0.1 and 
Bo = 0, 1.0, lo3. We observe that increasing the Bond number has a flattening effect 
on the free boundary, while the velocity field and the temperature distribution are 
hardly changed (comparing the values at corresponding nodal points of the finite- 
element triangulation) when Bo varies between 0 and lo3. The stabilizing effect of the 
Bond number was studied in Cuvelier (1985) where it was found that the damping 
factor of a small perturbation increases with the Bond number. When the Bond 
number tends to infinity (i.e. Bo x lo3 corresponding to terrestrial conditions), (3.4) 
can be considered as a singularly perturbed second-order equation. The term Bo$ 
dominates the term l /R(# ) .  It is well known (cf. Lions 1973) that the solution of 
equations of this type is almost constant in the interior of (0, 1) and satisfies the 
boundary conditions at x1 = 0 and 1. For (3.4) this means $ x = 1 on (0, 1) (cf. 
figure 7 b). 
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FIQURE 7. The influence of the Bond number on the shape of the free boundary, 
the temperature distribution and the flow field: parameters given in table 2. 

(a) 

FIQURE 8. The influence of the Marangoni number on the free boundary, the temperature 
distribution and the flow field: parameters given in table 2. 

Since the Grashof number appears in the right-hand side of the NavierStokes 
equations, the Grashof convection is a typical bulk-flow phenomenon. The buoyancy 
force acts as a body force on the fluid as a whole. On the other hand, the Marangoni 
number appears in the tangential-stress boundary condition, which gives rise to a 
shear stress on the free boundary of the melt. This surface force induces the so-called 
Marangoni (or thermocapillary) convection, which is a typical surface phenomenon. 
This phenomenon is shown in figures 8 (a-f) where the free boundary, the temperature 
distribution and the velocity vectors are given for Gr = 0, Pr = 0.73, Bo = 0, 
Oh = 1.0, 0.1, 0.01 and various values of the Marangoni number. 
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FIGURE 9. The variation of the free boundary, the temperature distribution and the flow field 
with Bond number: parameters given in table 2. 

The shear stress on the free boundary causes a build-up in the pressure in the 
upper-right corner of the melt, which results in an overpressure near the cold wall 
and an underpressure near the hot wall. Consequently the free boundary is higher 
at x1 = 1 and lower at xl = 0. The vorticity sources on the free boundary diffuse into 
the interior of the flow field, resulting in one vortex whose centre is situated near the 
free boundary. The order of magnitude of the velocity u can be estimated from 
Iu( - Ma for small values of Ma, while for large Marangoni numbers lul -   MU)^ (see 
Ostrach 1982). The iterative methods do not converge when the mesh becomes too 
distorted, i.e. when the free boundary is too far away from the static solution. The 
solution procedure for the NavierStokes equations in a fixed domain fails to converge 
when the convective terms dominate the diffusive terms, i.e. when the velocity 
becomes too large. In  this case mesh refinement is necessary. The maximum rise A# 
of the free boundary with respect to the static solution is estimated from A# N Mu Oh2. 
For small values of the Marangoni number there is little thermal convection, which 
implies that the temperature distribution is essentially determined by conduction. 
For large values of Oh, for instance Oh x 1.0, this gives a large surface-temperature 
gradient near x1 = 0 (see figure 8b),  while for small Oh, Oh x 0.01, a large surface- 
temperature gradient is observednear x1 = 1. For large Marangoni numbers convection 
dominates the diffusion. The flow brings hotter fluid towards the cold wall at x1 = 1, 
resulting into a large surface-temperature gradient near x1 = 1 for small Ohnesorge 
numbers (see figure 8f). The large vorticity sources created by this surface-temperature 
gradient diffuse into the flow field and accelerate the fluid locally. For large Marangoni 
numbers a shift of the centre of the vortex towards the cold wall is observed. 

Figures 9(a,  b ,  c )  show the flow pattern for G% = 0, Pr = 0.73, Ma = 100, Oh = 0.1 
and various values of the Bond number. Concerning the influence of the Bond number 
on pure Marangoni convection, i.e. when Gr = 0, the same remarks apply as for its 
influence on pure Grashof convection, i.e. when Mu = 0. 

The Ohnesorge number Oh is a measure for the relative importance of the viscous 
forces to the capillary forces. The influence of this number on the temperature, 
velocity and free boundary is illustrated by figures 5 (a, c ,  e ,  9 )  for Oh = 1 .O, 0 . 1 , O . O l  
and 0.005 for various values of Gr and Pr = 0.73, Ma = 0, Bo = 0 and by figures 8 ( c ,  e )  
for Oh = 0.1 and 0.01 for two values of Ma and Gr = 0, Pr = 0.73, Bo = 0. 

The influence of Oh on the velocity field and on the temperature distribution is very 
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FIGURE 10. The combined effect of Grashof and Marangoni convection: 
parameters given in table 2. 

small. On the other hand, the shape of the free boundary depends strongly on Oh. 
An increase of the Ohnesorge number has a distorting effect on the free boundary. This 
phenomenon can be explained from the observation that the Ohnesorge number is 
proportional to the capillary forces and inversely proportional to the surface-tension 
coefficient yo. When Oh tends to zero, the free boundary approaches the static free 
boundary. 

In the following pictures, we show the combined effect of Grashof and Marangoni 
convection. Both types of convection induce a clockwise-rotating vortex. In  order 
to study the relative importance of both types of convection, we performed some 
computations with negative values of the Grashof number, which corresponds, for 
instance, to a negative volume-expansion coefficient /?. Now, the Marangoni convection 
induces a clockwise vortex, while the vortex due to Grashof convection is in opposite 
direction. The relative importance of both types of convection is shown in 
figures 10(u, b, c) where Pr = 0.73, Mu = 50, Bo = 0, Oh = 0.1 and 15% = -200, 
-800, - 1000. Figures 10(d, e) show the situation for Pr = 0.73, Bo = 0, Oh = 0.01 
with Gr = - 1500, Mu = 50 and Gr = -2 x lo4, Mu = 300 respectively. 

In figure 10 (a) the Marangoni convection dominates the Grashof convection; only 
one vortex is observed. On increasing the Grashof number (figures 10(b, c)), two 
counter-rotating vortices appear. The vortex near the free surface is due to Marangoni 
convection, the vortex in the bulk is a consequence of Grashof convection. A 
characteristic number indicating the relative importance of Grashof (buoyancy) 

. 
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FIQURE 11.  The influence of the acceleration due to gravity g on the combined effect of 
Grashof and Marangoni convection : parameters given in table 2. 

convection to Marangoni (thermocapillary ) convection is the dynamic Bond number 
Bd, which for gentle convection is defined by (cf. Ostrach 1977) 

GrPr /?gp L2 Bd = - = 0. 
Ma a70 

The values of the dynamic Bond number corresponding to figures lO(a-c) are 
Bd = 2.9, 11.7, 14.6 respectively. For the situation of figures l O ( d ,  e) we have 
Bd = 21.9 and 48.7 respectively. For the two situations of figures 10 (d, e )  the Grashof 
convection is dominant. Nevertheless, we observe a small vortex in the left upper 
corner of the melt. In  this left upper corner the local value of - aT/a7 is much larger 
than the mean value (T+--T-)/L which appears in the definition of the Marangoni 
number. This means that, locally, the Marangoni convection can be important due 
to steep gradients in the surface temperature, resulting into a clockwise rotating 
vortex. 
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Finally, we show in figures 11 (a-1) the influence of the acceleration due to gravity 
g on the combined effect of Grashof and Marangoni convection for some values of 
Bi, and Bi,. These computations correspond to the situation in which all physical 
constants are fixed, except for g which is reduced by three times a factor 10 from 
its terrestrial value. This implies that all Characteristic numbers are fixed, except the 
Grashof and Bond number. We take Pr = 0.73, Ma = 146, Oh = 0.1, Bi, = 0, Bi, = 0 
andCr=2x104,Bo= 103(figure11a),Gr=2x103,Bo= 1O2(figure1lb),Gr =200, 
Bo = 10 (figure l l c ) ,  Gr = 20, Bo = 1.0 (figure l ld ) .  Corresponding situations are 
shown in figures 11 (e-h) and 11 (i-Z) for Bi, = 2 x Bi, = 0 and Bi, = 0, Bi, = 0.4 
respectively. These computations correspond to the following normalized data for the 
temperature: T(z, = 0) = 9.0, T(z, = 1)  = 10.0, To = 9.5, qnP = 8.0 and Tamb = 8.0. 
Isotherms are shown for T = 9.0 (0.1) 10.0. 

For these situations the dynamic Bond number equals Bd = 100, 10, 1.0, 0.1 
respectively. We see that for large values of Bd, corresponding to a terrestrial 
experiment, Grashof convection dominates, while for small values, corresponding to 
the same experiment in space, Marangoni convection is important. Radiation and 
cooling flatten the free boundary and influence the temperature field near the free 
boundary. When the cooling Biot number or the radiation Biot number is increased, 
a supercooled region (i.e. T < 9.0) appears in the right-upper corner of the melt 
(particularly for large Marangoni numbers, cf. figures 11 h, 1 ) .  

In this paper the melkrystal  interface has been considered as constant. For a 
realistic crystal-growth simulation this free (moving) boundary must be taken into 
account. The growth rate and the interface shape of the crystal are determined by 
the heat balance on the interface. For the present situation this means that the 
isotherm near the crystal reflects the shape of the crystal-melt interface. Figure 11 
shows the influence of the gravitation term on the temperature distribution and 
consequently on the melkrystal  interface. When we consider the isotherm near the 
crystal, i.e. near x1 = 1, we see that on Earth (cf. figure l la ,  e ,  i) the growth rate at  
the bottom is larger than at  the top, while in a low-g environment (cf. figures 11 d, h, 1 )  
the growth rate at the bottom is smaller than at the top. In a future paper we shall 
quantify these remarks by numerical experiments. 

5. R6sum6 and Final Remarks 
In this paper we have studied a two-dimensional free-boundary problem arising 

from the steady thermocapillary flow in a viscous fluid whose motion is governed 
by the Naviedtokes equations coupled with the heat-conduction equation. The 
problem is considered in the context of the open-boat technique of crystal growth. 
The problem is formulated in a non-dimensional form giving rise to the introduction 
of eight characteristic numbers (Re, Cr, Pr, Ma, Bo, Oh, Bi,, Bi,). 

For the computation of the free boundary three iterative methods have been 
studied. The first and second methods are defined as processes which iterate between 
the free boundary and the flow-field variables (velocity, pressure, temperature), while 
in the third method the flow-field variables are coupled with the unknown free- 
boundary nodes. The difference between the first and second method lies in the 
treatment of the Navier-Stokes equations coupled with the heat equation. For these 
three methods we have studied the convergence behaviour. We found a linear 
convergence rate of method one and two, while method three is almost quadratic. 
Concerning the inner-iterations of methods one and two, we observed that one or two 
iterations for the solution of the Navier-Stokes equations and the heat equation in 
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a fixed domain are sufficient. The problem of the Navier-Stokes and heat equation 
in a fixed domain is discretized by a finite-element method. The incompressibility 
constraint is verified in a global-penalized way. 

Finally a number of numerical experiments are performed, showing the influence 
of the characteristic numbers Gr, Pr, Ma,  Bo, Oh, Bi, and Bi, on the flow field 
variables and on the shape of the free boundary. In this paper a model of an 
open-boat-type crystal-growth method has been considered. The same computational 
techniques can be applied to realistic crystal-growth methods. We refer to Chang & 
Brown (1983), Langlois (1981,1982) for computations without capillary free boundary 
and to Chin & Carlson (1983), Derby & Brown (1985) and Witomski (1977) for a 
finite-element analysis of the thermal capillary model. The Czochralski crystal-growth 
technique and the floating-zone technique with thermocapillary free boundaries in 
which the melt-crystal free boundary is also taken into account will form the subject 
of our future research. 
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